Bag-of-Tricks for Recommendation: Recency, Clustering 그리고 Item Shuffling

안녕하세요, 머신러닝 엔지니어 카터입니다. 추천 시스템을 프로덕트에 적용하게 되면 이전에는 볼 수 없었던 수많은 문제점들이 보이기 시작합니다. 이번 글에서는 제가 라이너 추천 시스템을 개발하며 마주했던 문제 사항들과 해당 문제들을 해결하기 위해 적용한 방법론들에 대한 이야기를 드리고자 합니다. Recency: 최신성 고려하기 첫 번째 문제는 콘텐츠의 최신성에서 시작되었습니다. 엔지니어인 저는 주로 개발 더보기…

토픽 모델링으로 그리게 될 LINER의 미래

안녕하세요, 머신러닝 엔지니어 카터입니다. 지난 글에서는 라이너의 컨텐츠 기반 필터링 모듈 구축기에 대한 소개를 드렸습니다. 이번 글에서는 현재 라이너가 토픽 모델링을 어떻게 활용하고 있으며, 앞으로의 라이너 기술 발전 방향에 있어 토픽 모델링이 왜 중요한지에 대한 소개를 드리고자 합니다! 토픽 모델링이란 ? “라이너 ❤️ 토픽 모델링” 이야기에 앞서 토픽 모델링이란 무엇인가부터 더보기…

컨텐츠 기반 필터링 구축기: MiniLM, ScaNN 그리고 TFServing

안녕하세요, 머신러닝 엔지니어 카터입니다. 지난 번에는 외부로부터 추천 아이템이 축적되는 라이너가 컨텐츠 퀄리티 컨트롤을 위해 필터링 로직을 어떻게 가져가고 있는지에 대한 소개를 드렸습니다. 이번 글에서는 라이너가 컨텐츠 기반 필터링을 어떻게 구축하여 추천 시스템에 활용하고 있는지에 대해 소개드리고자 합니다! ANN과 ScaNN 라이너는 수백만 개 문서 중 사용자에게 추천할 만한 문서 수백 더보기…

양질 중 우선시 되어야 하는 것은? Quality!

개요 안녕하세요, 머신러닝 엔지니어로 근무 중인 카터입니다! 이번 포스트에서는 세상에 존재하는 모든 텍스트 컨텐츠가 적재될 수 있는 라이너에서 사용자에게 양질의 추천을 제공하기 위해 컨텐츠 필터링을 어떤 식으로 수행하고 있는지, 그리고 앞으로 어떻게 발전시키고자 하는지에 대해 소개드리고자 합니다. 라이너는 사용자의 텍스트 하이라이트 이벤트를 추천 모델링을 위한 사용자 피드백으로 적극 활용하고 있습니다. 더보기…